Effects of chemical structure on the thermodynamic efficiency of radical chain carriers for organic synthesis.
نویسندگان
چکیده
The chain carrier index (CCI), defined as the ratio of the bond dissociation free energies (BDFE) of corresponding chain carrier halides and hydrides, is proposed as a measure of the thermodynamic efficiency of chain carriers for radical dehalogenation. The larger this value is relative to the corresponding value of the organic substrate, the more thermodynamically efficient the process. The chloride and bromide CCIs were evaluated at the G3(MP2)-RAD(+) level of theory for 120 different R-groups, covering a broad range of carbon-centered and noncarbon-centered species; the effects of solvent and temperature have also been studied. The broad finding from this work is that successful chain carriers generally maximize the strength of their halide (versus hydride bonds) through charge-shift bonding. As a result, the thermodynamic efficiency of a chain carrier tends to increase down the periodic table, and also with the inclusion of stronger electron donating substituents. The CCIs of carbon-centered species fall into a relatively narrow range so that, even when the CCI is maximized through inclusion of lone pair donor OMe or NMe(2) groups, the thermodynamic driving force for dehalogenation of other organic substrates is modest at best, and the process is likely to be kinetically hampered. Among the noncarbon-centered species studied, bismuth- and borane-centered compounds have some of the highest CCI values and, although their kinetics requires further optimization, these classes of compounds would be worth further investigation as tin-free radical reducing agents.
منابع مشابه
The DFT chemical investigations of optoelectronic and photovoltaic properties of short-chain conjugated molecules
The research in the short-chain organic -conjugated molecules has become one of the most interesting topics in the fields of chemistry. These compounds have become the most promising materials for the optoelectronic device technology. The use of low band gap materials is a viable method for better harvesting of the solar spectrum and increasing its efficiency. The control of the band gap of th...
متن کاملEquilibrium Swelling Study of Cationic Acrylamide-Based Hydrogels: Effect of Synthesis Parameters, and Phase Transition in Polyelectrolyte Solutions
Cationic copolymer gels of acrylamide and [(methacrylamido) Propyl] trimethyl ammonium chloride (MAPTAC) were synthesized by free radical aqueous solution polymerization. The Taguchi method, a robust experimental design, was employed for the optimization of the synthesis based on the equilibrium swelling capacity of the hydrogels. Based on Taguchi method a standard L16 orthogonal array with fiv...
متن کاملSynthesis and Investigation of Photovoltaic Properties of New Organic Dye in Solar Cells Device
In this paper, we designed and synthesized free-metal dyes based on indoline. The proposed dyes were synthesized from phenothiazine as the starting material by standard reactions. The chemical structure of the synthesized dye was confirmed using FT-IR, 1HNMR and DSC techniques. Spectrophotometric measurements of the organic dyes in acetonitrile and on a TiO2 substrate ...
متن کاملInvestigation of fullerene (C60) effects on chemical properties of Metoprolol: A DFT study
In this research at the first Metoprolol drug and its fullerene derivative were optimized. Natural bond orbital (NBO), nuclear Indepndent chemical shift (NICS) and finally IR calculations, for these compounds were carried out at the B3LYP/6-31G* quantum chemistry level. Different parameters such as energy levels, the amount of chemical shift in different atoms, the amount of HOMO/LUMO, chemical...
متن کاملInvestigation of fullerene (C60) effects on chemical properties of Metoprolol: A DFT study
In this research at the first Metoprolol drug and its fullerene derivative were optimized. Natural bond orbital (NBO), nuclear Indepndent chemical shift (NICS) and finally IR calculations, for these compounds were carried out at the B3LYP/6-31G* quantum chemistry level. Different parameters such as energy levels, the amount of chemical shift in different atoms, the amount of HOMO/LUMO, chemical...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of organic chemistry
دوره 76 6 شماره
صفحات -
تاریخ انتشار 2011